I am a Ph.D. student in computer science at the Max Planck Institute of Biochemistry (previously at ETH Zürich as Scientific Assistant). I am supervised by Prof. K. Borgwardt.
Paolo Pellizzoni, T. Schulz, D. Chen and K. Borgwardt. On the Expressivity and Sample Complexity of Node-Individualized Graph Neural Networks, in NeurIPS, 2024.
[PDF]
Paolo Pellizzoni, C. Oliver and K. Borgwardt. “Structure- and function-aware substitution matrices via learnable graph matching”, in RECOMB, 2024.
[PDF]
Paolo Pellizzoni and K. Borgwardt. “FASM and Fast-YB: Significant Pattern Mining with False
Discovery Rate Control”, in IEEE ICDM, 2023.
[PDF]
D. Chen*, Paolo Pellizzoni*, and K. Borgwardt. “Fisher Information Embedding for Node and
Graph Learning”, in ICML, 2023.
[PDF]
Paolo Pellizzoni, G. Muzio, and K. Borgwardt. “Higher-order genetic interaction discovery with
network-based biological priors”, in ISMB, 2023.
[PDF]
Paolo Pellizzoni, A. Pietracaprina, and G. Pucci. “Fully Dynamic Clustering and Diversity
Maximization in Doubling Metrics”, in WADS, 2023.
[PDF]
Paolo Pellizzoni and F. Vandin. “VC-dimension and Rademacher Averages of Subgraphs, with
Applications to Graph Mining”, in IEEE ICDE, 2023.
[PDF]
Paolo Pellizzoni, A. Pietracaprina and G. Pucci. “Adaptive k-center and diameter estimation in sliding windows”,
International Journal of Data Science and Analytics, 2022.
[PDF]
Paolo Pellizzoni, A. Pietracaprina, and G. Pucci. “k-Center Clustering with Outliers in Sliding Windows”,
Algorithms, vol. 15, no. 2, 2022.
[PDF]
Paolo Pellizzoni, A. Pietracaprina, and G. Pucci. “Dimensionality-adaptive k-center in sliding windows”,
in IEEE DSAA, 2020.
[PDF]
Powered by Jekyll and Minimal Light theme.